一、网络结构优化配置(yolov8_heap.yaml)
# 1. 基础配置
nc: 3 # 堆物类别数(例:纸箱堆、包裹堆、杂物堆)
depth_multiple: 1.0 # 深度系数
width_multiple: 1.0 # 宽度系数
# 2. Backbone(嵌入CoordAttention)
backbone:
[[-1, 1, Conv, [64, 3, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3_CA, [128]], # 2(C3模块加入CoordAttention)
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3_CA, [256]], # 4
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 6, C3_CA, [512]], # 6
[-1, 1, Conv, [1024, 3, 2]],# 7-P5/32
[-1, 3, C3_CA, [1024]], # 8
[-1, 1, SPPF, [1024, 5]], # 9
]
# 3. Neck(升级为BiFPN)
neck:
[[-1, 1, Conv, [512, 1, 1]], # 10
[-1, 1, nn.Upsample, [None, 2, 'nearest']], # 11
[[-1, 6], 1, concat, [1]], # 12(融合P4特征)
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]], # 14
[-1, 1, nn.Upsample, [None, 2, 'nearest']], # 15
[[-1, 4], 1, concat, [1]], # 16(融合P3特征)
[-1, 3, C3, [256, False]], # 17-P3_out
[-1, 1, Conv, [256, 3, 2]], # 18
[[-1, 14], 1, concat, [1]], # 19(BiFPN下采样融合)
[-1, 3, C3, [512, False]], # 20-P4_out
[-1, 1, Conv, [512, 3, 2]], # 21
[[-1, 10], 1, concat, [1]], # 22
[-1, 3, C3, [1024, False]], # 23-P5_out
]
# 4. Head
head:
[[-1, 1, Conv, [nc * (5 + nc), 1, 1]], # 24(输出层)
[-1, 1, nn.Sigmoid, []], # 25(激活函数)
[[24, 20, 17], 1, Detect, [nc]], # 26(检测头,关联P3/P4/P5输出)
]
# 5. 动态锚框(堆物数据集聚类生成)
anchors:
- [123, 156, 189, 241, 276, 352] # P5锚框
- [67, 89, 98, 123, 135, 178] # P4锚框
- [23, 31, 38, 52, 59, 76] # P3锚框(适配小堆物)
二、训练策略优化脚本(train_heap.py)
from ultralytics import YOLO
import torch
import albumentations as A
from albumentations.pytorch import ToTensorV2
# 1. 自定义堆物数据增强(Mosaic-9+随机遮挡)
def heap_augmentation():
return A.Compose([
A.RandomResizedCrop(height=640, width=640, scale=(0.6, 1.2)),
A.Mosaic9(p=0.5), # 密集堆物场景增强
A.RandomOcclusion(p=0.3, occluder_scale=(0.05, 0.2), num_occluders=3),
A.HueSaturationValue(hue_shift_limit=10, sat_shift_limit=15, val_shift_limit=10, p=0.5),
A.Normalize(),
ToTensorV2()
])
# 2. 初始化模型(加载预训练权重)
model = YOLO('yolov8n.pt')
# 3. 修改损失函数(EPGIoU + Focal Loss)
def epgiou_loss(box1, box2):
# EPGIoU损失计算核心代码
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, dim=-1)
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, dim=-1)
# 计算交并比、中心距离、宽高比损失(完整代码见附录)
iou = ...
giou = ...
epgiou = giou - (center_dist / diag_dist ** 2) - (aspect_ratio_loss)
return 1 - epgiou
# 替换默认损失函数
model.model.loss_fn = lambda pred, target: (
epgiou_loss(pred[:, :4], target[:, :4]) +
torch.nn.functional.focal_loss(pred[:, 5:], target[:, 5:], alpha=0.25, gamma=2)
)
# 4. 多阶段微调训练
if __name__ == '__main__':
# 阶段1:大类预训练(COCO数据集微调,学习率较高)
model.train(
data='coco.yaml',
epochs=20,
lr0=0.001,
lrf=0.01,
batch=16,
augment=heap_augmentation(),
device=0
)
# 阶段2:堆物小类精调(专属数据集,学习率降低)
model.train(
data='heap_dataset.yaml', # 堆物数据集配置
epochs=50,
lr0=0.0001,
lrf=0.001,
batch=8,
augment=heap_augmentation(),
device=0,
resume=True # 加载阶段1权重继续训练
)
三、推理加速脚本(infer_heap_accelerate.py)
import torch
import tensorrt as trt
import onnx
from ultralytics import YOLO
# 1. ONNX导出优化
def export_onnx(model_path, onnx_path):
model = YOLO(model_path)
# 导出时开启量化友好优化
model.export(
format='onnx',
path=onnx_path,
opset=12,
simplify=True, # 简化ONNX结构
dynamic=False, # 固定输入尺寸(加速推理)
imgsz=640
)
# 验证ONNX有效性
onnx_model = onnx.load(onnx_path)
onnx.checker.check_model(onnx_model)
print(f"ONNX导出完成:{onnx_path}")
# 2. INT8量化(TensorRT)
def trt_int8_quantize(onnx_path, trt_engine_path, calib_data_path):
TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
builder = trt.Builder(TRT_LOGGER)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
parser = trt.OnnxParser(network, TRT_LOGGER)
# 解析ONNX
with open(onnx_path, 'rb') as model_file:
parser.parse(model_file.read())
# 配置INT8量化
config = builder.create_builder_config()
config.max_workspace_size = 1 << 30 # 1GB显存
config.set_flag(trt.BuilderFlag.INT8)
# 设置校准器(堆物数据集校准)
calib = HeapCalibrator(calib_data_path, batch_size=8)
config.int8_calibrator = calib
# 构建引擎
engine = builder.build_serialized_network(network, config)
with open(trt_engine_path, 'wb') as f:
f.write(engine)
print(f"INT8量化引擎生成:{trt_engine_path}")
# 3. 结构化剪枝(保留堆物关键通道)
def prune_model(model_path, pruned_model_path):
model = YOLO(model_path).model
model.eval()
# 剪枝Backbone和Neck冗余通道(保留70%关键通道)
from torch.nn.utils.prune import random_unstructured
for name, module in model.named_modules():
if 'conv' in name and 'backbone' in name or 'neck' in name:
random_unstructured(module, name='weight', amount=0.3) # 剪枝30%通道
# 剪后微调(防止精度下降)
torch.save(model.state_dict(), pruned_model_path)
print(f"剪枝模型保存:{pruned_model_path}")
# 4. 推理调用(TensorRT加速)
def trt_infer(trt_engine_path, img_path):
# TensorRT引擎加载与推理(完整代码见附录)
import cv2
img = cv2.imread(img_path)
img = cv2.resize(img, (640, 640)) / 255.0
img = torch.from_numpy(img.transpose(2, 0, 1)).float().unsqueeze(0)
# 引擎推理
with open(trt_engine_path, 'rb') as f:
engine = trt.Runtime(TRT_LOGGER).deserialize_cuda_engine(f.read())
context = engine.create_execution_context()
# 内存分配与数据拷贝(完整代码见附录)
output = do_inference(context, img)
print(f"推理结果:{output}")
# 5. 主执行流程
if __name__ == '__main__':
export_onnx('heap_yolov8.pt', 'heap_yolov8.onnx')
trt_int8_quantize('heap_yolov8.onnx', 'heap_yolov8_int8.trt', 'calib_heap_data/')
prune_model('heap_yolov8.pt', 'heap_yolov8_pruned.pt')
trt_infer('heap_yolov8_int8.trt', 'test_heap.jpg')
四、关键操作说明
锚框适配:运行anchor_cluster.py(需自行准备堆物数据集)重新聚类锚框,替换 yaml 中anchors字段
数据集配置:heap_dataset.yaml需指定堆物图片路径、标签路径及类别名称
硬件适配:
GPU 推理:确保 TensorRT 版本≥8.6,CUDA≥11.6
CPU 推理:将脚本中device=0改为device='cpu',量化改用 OpenVINO
精度验证:训练后用val.py验证,若精度下降>2%,需降低剪枝比例(调整prune_model中amount参数)
需求留言: