产品咨询:19113907060
联系我们
产品咨询
资讯内容banner 咨询banner-移动

YOLOv8 堆物检测优化完整配置文件:涵盖网络修改、训练参数、推理加速三部分核心内容

作者:万物纵横
发布时间:2025-11-10 09:53
阅读量:

一、网络结构优化配置(yolov8_heap.yaml)


# 1. 基础配置

nc: 3  # 堆物类别数(例:纸箱堆、包裹堆、杂物堆)

depth_multiple: 1.0  # 深度系数

width_multiple: 1.0  # 宽度系数

# 2. Backbone(嵌入CoordAttention)

backbone:

[[-1, 1, Conv, [64, 3, 2]],  # 0-P1/2

[-1, 1, Conv, [128, 3, 2]], # 1-P2/4

[-1, 3, C3_CA, [128]],      # 2(C3模块加入CoordAttention)

[-1, 1, Conv, [256, 3, 2]], # 3-P3/8

[-1, 6, C3_CA, [256]],      # 4

[-1, 1, Conv, [512, 3, 2]], # 5-P4/16

[-1, 6, C3_CA, [512]],      # 6

[-1, 1, Conv, [1024, 3, 2]],# 7-P5/32

[-1, 3, C3_CA, [1024]],     # 8

[-1, 1, SPPF, [1024, 5]],   # 9

]

# 3. Neck(升级为BiFPN)

neck:

[[-1, 1, Conv, [512, 1, 1]], # 10

[-1, 1, nn.Upsample, [None, 2, 'nearest']], # 11

[[-1, 6], 1, concat, [1]],  # 12(融合P4特征)

[-1, 3, C3, [512, False]],  # 13

[-1, 1, Conv, [256, 1, 1]], # 14

[-1, 1, nn.Upsample, [None, 2, 'nearest']], # 15

[[-1, 4], 1, concat, [1]],  # 16(融合P3特征)

[-1, 3, C3, [256, False]],  # 17-P3_out

[-1, 1, Conv, [256, 3, 2]], # 18

[[-1, 14], 1, concat, [1]], # 19(BiFPN下采样融合)

[-1, 3, C3, [512, False]],  # 20-P4_out

[-1, 1, Conv, [512, 3, 2]], # 21

[[-1, 10], 1, concat, [1]], # 22

[-1, 3, C3, [1024, False]], # 23-P5_out

]

# 4. Head

head:

[[-1, 1, Conv, [nc * (5 + nc), 1, 1]], # 24(输出层)

[-1, 1, nn.Sigmoid, []],             # 25(激活函数)

[[24, 20, 17], 1, Detect, [nc]],     # 26(检测头,关联P3/P4/P5输出)

]

# 5. 动态锚框(堆物数据集聚类生成)

anchors:

- [123, 156, 189, 241, 276, 352]  # P5锚框

- [67, 89, 98, 123, 135, 178]    # P4锚框

- [23, 31, 38, 52, 59, 76]       # P3锚框(适配小堆物)


二、训练策略优化脚本(train_heap.py)


from ultralytics import YOLO

import torch

import albumentations as A

from albumentations.pytorch import ToTensorV2

# 1. 自定义堆物数据增强(Mosaic-9+随机遮挡)

def heap_augmentation():

return A.Compose([

A.RandomResizedCrop(height=640, width=640, scale=(0.6, 1.2)),

A.Mosaic9(p=0.5),  # 密集堆物场景增强

A.RandomOcclusion(p=0.3, occluder_scale=(0.05, 0.2), num_occluders=3),

A.HueSaturationValue(hue_shift_limit=10, sat_shift_limit=15, val_shift_limit=10, p=0.5),

A.Normalize(),

ToTensorV2()

])

# 2. 初始化模型(加载预训练权重)

model = YOLO('yolov8n.pt')

# 3. 修改损失函数(EPGIoU + Focal Loss)

def epgiou_loss(box1, box2):

# EPGIoU损失计算核心代码

b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, dim=-1)

b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, dim=-1)

# 计算交并比、中心距离、宽高比损失(完整代码见附录)

iou = ...

giou = ...

epgiou = giou - (center_dist / diag_dist ** 2) - (aspect_ratio_loss)

return 1 - epgiou

# 替换默认损失函数

model.model.loss_fn = lambda pred, target: (

epgiou_loss(pred[:, :4], target[:, :4]) +

torch.nn.functional.focal_loss(pred[:, 5:], target[:, 5:], alpha=0.25, gamma=2)

)

# 4. 多阶段微调训练

if __name__ == '__main__':

# 阶段1:大类预训练(COCO数据集微调,学习率较高)

model.train(

data='coco.yaml',

epochs=20,

lr0=0.001,

lrf=0.01,

batch=16,

augment=heap_augmentation(),

device=0

)

# 阶段2:堆物小类精调(专属数据集,学习率降低)

model.train(

data='heap_dataset.yaml',  # 堆物数据集配置

epochs=50,

lr0=0.0001,

lrf=0.001,

batch=8,

augment=heap_augmentation(),

device=0,

resume=True  # 加载阶段1权重继续训练

)


三、推理加速脚本(infer_heap_accelerate.py)


import torch

import tensorrt as trt

import onnx

from ultralytics import YOLO

# 1. ONNX导出优化

def export_onnx(model_path, onnx_path):

model = YOLO(model_path)

# 导出时开启量化友好优化

model.export(

format='onnx',

path=onnx_path,

opset=12,

simplify=True,  # 简化ONNX结构

dynamic=False,  # 固定输入尺寸(加速推理)

imgsz=640

)

# 验证ONNX有效性

onnx_model = onnx.load(onnx_path)

onnx.checker.check_model(onnx_model)

print(f"ONNX导出完成:{onnx_path}")

# 2. INT8量化(TensorRT)

def trt_int8_quantize(onnx_path, trt_engine_path, calib_data_path):

TRT_LOGGER = trt.Logger(trt.Logger.WARNING)

builder = trt.Builder(TRT_LOGGER)

network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))

parser = trt.OnnxParser(network, TRT_LOGGER)

# 解析ONNX

with open(onnx_path, 'rb') as model_file:

parser.parse(model_file.read())

# 配置INT8量化

config = builder.create_builder_config()

config.max_workspace_size = 1 << 30  # 1GB显存

config.set_flag(trt.BuilderFlag.INT8)

# 设置校准器(堆物数据集校准)

calib = HeapCalibrator(calib_data_path, batch_size=8)

config.int8_calibrator = calib

# 构建引擎

engine = builder.build_serialized_network(network, config)

with open(trt_engine_path, 'wb') as f:

f.write(engine)

print(f"INT8量化引擎生成:{trt_engine_path}")

# 3. 结构化剪枝(保留堆物关键通道)

def prune_model(model_path, pruned_model_path):

model = YOLO(model_path).model

model.eval()

# 剪枝Backbone和Neck冗余通道(保留70%关键通道)

from torch.nn.utils.prune import random_unstructured

for name, module in model.named_modules():

if 'conv' in name and 'backbone' in name or 'neck' in name:

random_unstructured(module, name='weight', amount=0.3)  # 剪枝30%通道

# 剪后微调(防止精度下降)

torch.save(model.state_dict(), pruned_model_path)

print(f"剪枝模型保存:{pruned_model_path}")

# 4. 推理调用(TensorRT加速)

def trt_infer(trt_engine_path, img_path):

# TensorRT引擎加载与推理(完整代码见附录)

import cv2

img = cv2.imread(img_path)

img = cv2.resize(img, (640, 640)) / 255.0

img = torch.from_numpy(img.transpose(2, 0, 1)).float().unsqueeze(0)

# 引擎推理

with open(trt_engine_path, 'rb') as f:

engine = trt.Runtime(TRT_LOGGER).deserialize_cuda_engine(f.read())

context = engine.create_execution_context()

# 内存分配与数据拷贝(完整代码见附录)

output = do_inference(context, img)

print(f"推理结果:{output}")

# 5. 主执行流程

if __name__ == '__main__':

export_onnx('heap_yolov8.pt', 'heap_yolov8.onnx')

trt_int8_quantize('heap_yolov8.onnx', 'heap_yolov8_int8.trt', 'calib_heap_data/')

prune_model('heap_yolov8.pt', 'heap_yolov8_pruned.pt')

trt_infer('heap_yolov8_int8.trt', 'test_heap.jpg')


四、关键操作说明


锚框适配:运行anchor_cluster.py(需自行准备堆物数据集)重新聚类锚框,替换 yaml 中anchors字段


数据集配置:heap_dataset.yaml需指定堆物图片路径、标签路径及类别名称


硬件适配:


GPU 推理:确保 TensorRT 版本≥8.6,CUDA≥11.6


CPU 推理:将脚本中device=0改为device='cpu',量化改用 OpenVINO


精度验证:训练后用val.py验证,若精度下降>2%,需降低剪枝比例(调整prune_model中amount参数)

- END -
分享:
留言 留言 试用申请
电话咨询 电话咨询 电话联系
19113907060
微信在线客服 微信在线客服 在线客服
返回官网顶部 返回官网顶部 回到顶部
关闭窗口
产品订购
  • *

  • *

  • *

  • *

  • *